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Outline
• static

– open hole
– BVID

• fatigue
– constant amplitude
– B-Basis curve
– “Goodman diagram”
– truncation level determination
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Effect of damage type on compression strength
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Strength/Weight ratio for various materials 
and layups (sandwich under compression)



Strength/Weight ratio for different materials 
and layup (sandwich under shear)



BVID versus 0.25” hole 
(sandwich compression or shear)

• Statistically indistinguishable
• Can use 0.25” hole as a simpler test 
• Can use hole analysis instead of more 

complicated impact damage analysis
• Subject to spot checking by tests (may be 

material dependent)



Cutoff strains

• Small coupon data are conservative
• Different cutoff strain values depending on 

application 

Higher strain cutoff 
than at edges

Lower strain 
cutoff

Lower strain 
cutoff



Modeling impact damage
• Area of reduced stiffness (modulus retention 

ratio concept)
• Lekhnitskii-based stress analysis for laminate 

with inclusion – constant stiffness in the 
damaged region

• Linear variation of stiffness in the damaged 
region – limited test input required

• ND tests to measure in-plane stiffness of 
damaged region very worthwhile
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Improved CAI analysis
The approach [1] treats the site with impact damage as an inclusion of 
different stiffness.  
The variation of the stiffness inside the damaged region as a function 
of the radial distance r (no dependence on θ), 
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• calculate average stiffness in damage region

• divide by far-field stiffness (modulus retention ratio)

• compute SCF:
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• calculate CAI strength:

SCF
u

CAI
σ

σ =

Ideally, should create a model that predicts Eo, E1 using NDI data.  If not 
available,  constants Eo and E1 can be back-calculated from one 
specimen and applied to other energy levels.  R is measured from one 
specimen; Ri, if non-zero, assuming linear variation of Eo/(Eo+E1) and 
the same test specimen



CAI predictions versus test

10
12
14
16
18
20
22
24
26
28
30
32
34
36

20 22 24 26 28 30 32 34 36

Experimental CAI strength (ksi)

Pr
ed

ic
tio

n 
(k

si
)

Present

Perfect Correlation

CAI predictions versus test – improved model

E

r



Fatigue analysis 
(sandwich or monolithic structure)

• Probability of failure p during each cycle
• Probability of failure P after n cycles
• Maximizing P as a function of cycles gives 

a prediction for the cycles to failure
• p ?  In simplest approach assume p=const
• Obtain p from static test data (statistical 

distribution for static strength gives p)



Fatigue analysis

• R ratio dependence
• Statistical distribution dependence (normal 

versus 2-parameter Weibull)
• Sensitivity to statistical parameters 

(scatter)



Fatigue analysis based on the probability of failure
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Unidirectional AS4/3501-6 with R=0.



Tension-tension fatigue for [(±45/02)2]s T800/5245



Tension-compression fatigue (R=-1) for [(±45/02)2]s T800/5245



Compresion-compression fatigue (R=10) for [(±45/02)2]s T800/5245



Tension-Torsion case (tension=torsion and R=0) for woven glass fabric



Onset of delamination load for skin/stiffener configuration (R=0.1, 
IM6/3501-6 material)



. Onset of edge delamination for [352/-352/02/902]s AS4/PEEK (R=0.1)



Onset of delamination for quasi-isotropic glass/epoxy (R=0.1)



Tension-compression fatigue (R=-1) of  [02/±45/02/±45/90]s BMI laminate



Tension-Compression (R=-1.66) failure of T300/914 bolted joints



Fatigue predictions for sandwich specimens 
with BVID
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Applications

• Fatigue life prediction under constant 
amplitude

• Determination of B- (or A-) Basis life curve
• “Goodman” diagrams
• Truncation levels for testing
• Extension to spectrum loading



Determination of B-Basis life

• compare to Northrop report value of 13



“Goodman” diagram



Truncation level determination

• weak dependence on R

• 0.3-0.4 for 1 million cycles



Reminder

• still need to account for environment, 
material scatter (if not explicitly included in 
equations)



Conclusions
• 0.25”  holes and BVID damage for sandwich are 

equivalent (compression and shear)
• predictions for CAI for sandwich with BVID
• determination of cycles to failure under constant 

amplitude
• application to:

– B-Basis life determination
– Goodman diagrams
– truncation levels



Caveats
• Hole to Impact equivalence is a function of

– specimen size
– maybe material(?)

• Determination of fatigue curves requires further 
improvements:
– Non constant value of p (track damage creation and 

growth)
– Improved methodology for R-dependence

• “Analysis without testing is almost as bad as 
testing without analysis”
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Effect of damage size on compr. buckling load of sandwich 
panels with impact damage - (+-45)/(0/90) IM7/8552 face on 1" 
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BVID analysis

• Finite width effects
• Boundary condition effects
• BVID as stress concentration
• Predictions vs test results



Finite Width Correction Factor - Compression
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Relation of buckling loads between all simply supported 
panel and ss-free panel (sandwich uncer compression)
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Effect of face thickness and energy on indentation 
depth
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Effect of impact energy on damage size (coin tap 
inspection)
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